
Circuit Breakers
Avoiding avoidable P0/1’s

Synchronous Requests are The Devil™
Sync requests should be avoided in the web thread

Offload things via Sidekiq/AMQP whenever you can

Return a 201 Accepted, and find a way to communicate with your APIs clients

If client is backend system, use webhooks (hit an endpoint)

If client is mobile/web/etc, return a websocket URL to subscribe for updates

A Common Sync Call

Service A aims to respond in 300ms

Service B usually responds in 200ms

Ignoring network latency and content download times…

Service A Service BClient X

200ms50ms300ms

A Common Sync Call Problem

A Common Sync Call Problem

Service B is having a bad day

Service A gives it too much of a leash

Client X is stuck waiting for 10+ seconds

Service A Service BClient X

10s50ms10.05s

The Keycard Troubles of 2016

Heroku Chop of 30s

For the systems still on Heroku, web threads terminate after thirty seconds

That’s better than ∞ seconds but… 😅

A Common Sync Call Problem

Service A

Service C

Client X

30s30s30s

Service B

Service D

50ms

30s

Sucks for this specific user
Waiting 30 seconds to be told something failed?

😡

Waiting another 30 seconds to be told it still failed?

👋

Service A

GET /ok

GET /ok

GET /slow

GET /ok

GET /ok

GET /ok

Request 1

Request 2

Request 3

Request 4

Request 5

Request 6

Client X Service B

🔥

Service A

GET /ok

GET /slow

GET /ok

GET /ok

Request 7

Request 8

Request 3

Request 9

Request 10

Request 11

Client X Service B

🔥

GET /slow 🔥

GET /slow 🔥

Service A

GET /slow

Request 12

Request 8

Request 3

Request 13

Request 14

Request 11

Client X Service B

🔥

GET /slow 🔥

GET /slow 🔥

GET /slow 🔥

GET /slow 🔥

GET /slow 🔥

Sucks for all other users of any clients talking to that
Web threads sit there spinning on slow requests

And the users of any services talking to THAT

For each thread that gets stuck, given that thread is
stuck for 30s, if most requests go through in 100ms,
that's 3000 potential requests not being handled.

Setting a timeout of 10s gives that thread 20s of extra
life, meaning 2000 more successful requests.

Step 1: Set Timeouts

Ruby

conn = Faraday.new('http://foo');

conn.get do |req|
 req.url '/bar'
 req.options.timeout = 0.5 # open/read timeout in seconds
 req.options.open_timeout = 0.2 # connection open timeout in seconds
End

Step 1: Set Timeouts

PHP

$client->request('GET', '/delay/5', ['timeout' => 2]);

Picking the right timeout
Is it here?

Picking the right timeout
Is it here?

Picking the right timeout
Right here!

Step 2: Retries
Try a second time

Maybe you’ll get in the 99% of quicker responses!

Ruby

Faraday.new do |conn|

 conn.request :retry, max: 1, interval: 0.05

end

Add up all timeouts and retries
Service A calls B, C, D & E

4 services, with timeout = 2s, retries = 2 (3 total attempts)

 4 * 2 * 3 = 24 seconds!!

That’s a lot of time to be waiting for stuff

Step 3: Circuit Breakers
Don’t wait for stuff that probably won’t work

Free up web workers to answer requests that
probably will work!

https://martinfowler.com/bliki/CircuitBreaker.html

Service A

GET /ok

GET /ok

GET /slow

GET /ok

GET /ok

GET /ok

Request 1

Request 2

Request 3

Request 4

Request 5

Request 6

Client X Service B

 ⛔

Service A

GET /ok

GET /ok

GET /slow

GET /ok

GET /ok

Request 7

Request 8

Request 9

Request 10

Request 11

Request 12

Client X Service B

 ⛔

GET /ok

Service A

GET /ok

GET /ok

GET /ok

Request 12

Request 13

Request 14

Request 16

Client X Service B

GET /ok

GET /slowRequest 11 ⛔

GET /okRequest 15

require 'faraday'
require 'circuitbox/faraday_middleware'

conn = Faraday.new(:url => "http://example.com") do |c|
 c.use Circuitbox::FaradayMiddleware
end

response = conn.get("/api")
if response.success?
 # success
else
 # failure or open circuit
end

One Option: Code Breakers

Another Option: Service Mesh! 🙌

Service Mesh is a network
communication infrastructure which
allows your to decouple and offload

most of the application network
functions from your service code.

Envoy - Service Mesh from Lyft

https://www.envoyproxy.io/

Demo/Guide on creating Circuit Breakers

http://blog.christianposta.com/microservices/01-microservices-patterns-with-e
nvoy-proxy-part-i-circuit-breaking/

Comparing Envoy and Istio Circuit Breaking

http://blog.christianposta.com/microservices/comparing-envoy-and-istio-circuit
-breaking-with-netflix-hystrix/

https://www.envoyproxy.io/
http://blog.christianposta.com/microservices/01-microservices-patterns-with-envoy-proxy-part-i-circuit-breaking/
http://blog.christianposta.com/microservices/01-microservices-patterns-with-envoy-proxy-part-i-circuit-breaking/
http://blog.christianposta.com/microservices/comparing-envoy-and-istio-circuit-breaking-with-netflix-hystrix/
http://blog.christianposta.com/microservices/comparing-envoy-and-istio-circuit-breaking-with-netflix-hystrix/

apisyouwonthate.com

Selling this book on pre-order!

Coupon code: APIDAYS2018

All this and more

