Circuit Breakers

Avoiding avoidable P0O/1’s

y Garrow Bedrossian 2 -
1 I Follow l
@grokfail % o

“if you switch one of the microservices off
and anything else breaks, you don’t really
have a microservice architecture, you just
have a distributed monolith!”

Domain Modelling made functional, by Scott
Wilaschin

9:09 PM - 19 May 2018

291 Retweets 651Likes g3 ‘ © & % 3 0 (@{&‘

v

Synchronous Requests are The Devil™

Sync requests should be avoided in the web thread

Offload things via Sidekig/AMQP whenever you can

Return a 201 Accepted, and find a way to communicate with your APIs clients
If client is backend system, use webhooks (hit an endpoint)

If client is mobile/web/etc, return a websocket URL to subscribe for updates

A Common Sync Call

Service A aims to respond in 300ms

Service B usually responds in 200ms

Ignoring network latency and content download times...

Client X Service A

300ms 50ms

Service B

200ms

A Common Sync Call Problem

227w 28 em

RESP. TIME THROUGHPUT

Response time
2500 ms

2000 ms \
1500 ms

1000 ms

500 ms

S | N

Feb 6 Feb 7 Feb 8

Fef) 9

A Common Sync Call Problem

Service B is having a bad day
Service A gives it too much of a leash

Client X is stuck waiting for 10+ seconds

Client X Service A

10.05s 50ms

Service B

10s

The Keycard Troubles of 2016

@® 502 ®2.3minutes & [T
ol 232 bytes
@502 @®2.2minutes & (T

ol 232 bytes

Heroku Chop of 30s

For the systems still on Heroku, web threads terminate after thirty seconds

Transactions App server time

AllReservationsController#index 2,990 ms
Transaction traces: 30.1s 295s 29.3s

That’'s better than « seconds but... &

A Common Sync Call Problem

Service C

/ 50ms
Client X | Service A | Service B

30s 30s 30s \

Service D

30s

Sucks for this specific user

Waiting 30 seconds to be told something failed?

&

Waiting another 30 seconds to be told it still failed?

)
N

Client X

Request 1

Request 2

Request 3

Request 4

Request 5

Request 6

Service A

GET /ok

GET /ok

GET /slow

GET /ok

GET /ok

GET /ok

Service B

Client X

Request 7

Request 8

Request 3

Request 9

Request 10

Request 11

Service A

GET /ok

GET /slow

GET /slow

GET /ok

GET /ok

GET /slow

Service B

Client X

Request 12

Request 8

Request 3

Request 13

Request 14

Request 11

Service A

GET /slow

GET /slow

GET /slow

GET /slow

GET /slow

GET /slow

Service B

e e e L~ e =

Sucks for all other users of any clients talking to that

Web threads sit there spinning on slow requests

12k ms

10k ms

8k ms

6k ms

4000 ms

2000 ms

(&)

23,
AM

May 23, May 23,
11:10 AM 11:20 AM

Request Queuing Middieware

Web external

Ruby

May 23,
11:30 AM

Postgres

May 23,
11:40 AM

Memcached

Redis

May 23,
11:50 AM

ActiveRecord

Apdex score @ 0.65[0.5] 0.92[7.0]
APP SERVER B BROWSER

0.25
o

End User App Server

Throughput 1.9K rom
AVERAGE
4000
2000 W
o

23, May23, May23, May23, May23, May 23,
)AM 11:10 AM 11:20 AM 11:30 AM 11:40 AM 11:50 AM

And the users of any services talking to THAT

1500 ms

1250 ms

1000 ms

750 ms

500 ms

250 ms

O

23, May 23,
AM 11:10 AM

Request Queuing

May 23,
11:20 AM

[oc Exccution JIRVEFEE

May 23,

11:30 AM

Ruby

Postgres

May 23,
11:40 AM

Redis

Web external

May 23,
11:50 AM

Apdex score @ 0.98[0.5] NS [7.0]*
APPSERVER M BROWSER
1 B -
0.5
(&)
End User App Server
Throughput 725 rpm
AVERAGE
2000
1000
O
23, May23, May23, May23, May23, May 23,

)AM 11:10 AM 11:20 AM 11:30 AM 11:40 AM 11:50 AM

For each thread that gets stuck, given that thread is
stuck for 30s, if most requests go through in 100mes,
that's 3000 potential requests not being handled.

Setting a timeout of 10s gives that thread 20s of extra
life, meaning 2000 more successful requests.

Step 1: Set Timeouts

Ruby

conn = Faraday.new ('http://foo');

conn.get do |req|
reg.url '/bar'
reg.options.timeout = 0.5 # open/read timeout in seconds

reqg.options.open timeout = 0.2 # connection open timeout in seconds
End

Step 1: Set Timeouts

PHP

Sclient->request ('GET', '/delay/5', ['timeout' => 2]);

Picking the right timeout 67.6ms 2.13s

APP SERVER ' BROWSER

300 ms ~— Is it here?

250 ms
/

J
|

200 ms

l
ISOm%

')
100 n'rs

Picking the right timeout N ARG

900 ms
. o .
800 ms Is it here” >
700 ms
600 ms
500 ms
400 ms
300 ms /\
“/i \ l)"‘\
200 ms ! - A \\
/ I\ 4 \
e —— i e i T —— .‘_/ Yt N nd ‘\\Q T — e ———
100 x B /\—’\-———A‘\—M——"—A————
— N —
O .
Feb §, Feb 6, Feb 7, Feb 8,
12:00 AM 12:00 AM 12:00 AM 12:00 AM

WSS o5 [Wiediand

Picking the right timeout N ARG
900 ms
800 ms Right here!
700 ms
600 ms

500 ms

wis \ N\
w s o |

300 ms

200 ms

% AY J
—— : ™ e — iV , Tl g]

— T

O
Feb 5, Feb 6, Feb 7, Feb 8,
12:00 AM 12:00 AM 12:00 AM 12:00 AM

WSSEN 05w [viediEnd

Step 2: Retries

Try a second time

Maybe you'll get in the 99% of quicker responses!

Ruby
Faraday.new do |conn]
conn.request :retry, max: 1, interval: 0.05

end

Add up all timeouts and retries

Service AcallsB,C,D & E

4 services, with timeout = 2s, retries = 2 (3 total attempts)

4*2*3 =24 seconds!!

That’s a lot of time to be waiting for stuff

client cledt supplier

Step 3: Circuit Breakers

H - ‘ - ==

Don’t wait for stuff that probably won’t work e o ok |

| connection |

| | problem |

Free up web workers to answer requests that l : :

probably will work! > |
Wi A I:l

ad —A— vt | timeout! |

1 timeout! | |

|
R A r—L'

- timeout! |

T ' I Itrip :

| | |

| |

|

< _A__ |

circuit open! I |

" [}

https://martinfowler.com/bliki/CircuitBreaker.html i

Client X

Request 1

Request 2

Request 3

Request 4

Request 5

Request 6

Service A

GET /ok

GET /ok

GET /slow

GET /ok

GET /ok

GET /ok

Service B

Client X

Request 7

Request 8

Request 9

Request 10

Request 11

Request 12

Service A

GET /ok

GET /ok

GET /ok

GET /ok

GET /slow

GET /ok

Service B

Client X

Request 11

Request 12

Request 13

Request 14

Request 15

Request 16

Service A

GET /slow

GET /ok

GET /ok

GET /ok

GET /ok

GET /ok

Service B

=

One Option: Code Breakers
require 'faraday'
require 'circuitbox/faraday middleware’

conn = Faraday.new(:url => "http://example.com") do |c|
c.use Cilrcuilitbox::FaradayMiddleware
end

response = conn.get ("/api")
1f response.success?

success
else

failure or open circuit

end

Another Option: Service Mesh! @1

API Gatway

Most API Gateways have features offered from
Service Mesh built in. However, they can still API Service API Service API Service
leverage existing service mesh too.

Composite/integration
Microservices

' Business/composition logic

Business Logic Business Logic Business Logic | ——————-

B N —— Primitive network functions

Service Mesh

Service Mesh Service Mesh H——————- Application network functions

Core/Atomic
Microservices

Business Logic Business Logic Business Logic Business Logic Business Logic

Service Mesh Service Mesh Service Mesh Service Mesh Service Mesh

Service Mesh is a network
communication infrastructure which
allows your to decouple and offload

most of the application network
functions from your service code.

Envoy - Service Mesh from Lyft

https://www.envoyproxy.io/

Demo/Guide on creating Circuit Breakers

http://blog.christianposta.com/microservices/01-microservices-patterns-with-e
nvoy-proxy-part-i-circuit-breaking/

Comparing Envoy and Istio Circuit Breaking

http://blog.christianposta.com/microservices/comparing-envoy-and-istio-circuit
-breaking-with-netflix-hystrix/

https://www.envoyproxy.io/
http://blog.christianposta.com/microservices/01-microservices-patterns-with-envoy-proxy-part-i-circuit-breaking/
http://blog.christianposta.com/microservices/01-microservices-patterns-with-envoy-proxy-part-i-circuit-breaking/
http://blog.christianposta.com/microservices/comparing-envoy-and-istio-circuit-breaking-with-netflix-hystrix/
http://blog.christianposta.com/microservices/comparing-envoy-and-istio-circuit-breaking-with-netflix-hystrix/

i v := List View © Map View

Map view is currently
unavailable at this time.

Most Popular

$14
Per Day

Recommended Vv

$119°
Per Day

itle To JFK

Viin

All this and more

apisyouwonthate.com
Selling this book on pre-order!

Coupon code: APIDAYS2018

~

\ PHILIP STURGEON
\ -

