Circuit Breakers

Avoiding avoidable P0O/1’s
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“if you switch one of the microservices off
and anything else breaks, you don’t really
have a microservice architecture, you just
have a distributed monolith!”
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Synchronous Requests are The Devil™

Sync requests should be avoided in the web thread

Offload things via Sidekig/AMQP whenever you can

Return a 201 Accepted, and find a way to communicate with your APIs clients
If client is backend system, use webhooks (hit an endpoint)

If client is mobile/web/etc, return a websocket URL to subscribe for updates



A Common Sync Call

Service A aims to respond in 300ms

Service B usually responds in 200ms

Ignoring network latency and content download times...
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A Common Sync Call Problem
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A Common Sync Call Problem

Service B is having a bad day
Service A gives it too much of a leash

Client X is stuck waiting for 10+ seconds
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The Keycard Troubles of 2016
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Heroku Chop of 30s

For the systems still on Heroku, web threads terminate after thirty seconds

Transactions App server time

AllReservationsController#index 2,990 ms
Transaction traces: 30.1s 295s 29.3s

That’'s better than « seconds but... &



A Common Sync Call Problem
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Sucks for this specific user

Waiting 30 seconds to be told something failed?
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Waiting another 30 seconds to be told it still failed?
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Sucks for all other users of any clients talking to that

Web threads sit there spinning on slow requests
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And the users of any services talking to THAT
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For each thread that gets stuck, given that thread is
stuck for 30s, if most requests go through in 100mes,
that's 3000 potential requests not being handled.



Setting a timeout of 10s gives that thread 20s of extra
life, meaning 2000 more successful requests.



Step 1: Set Timeouts

Ruby

conn = Faraday.new ('http://foo');

conn.get do |req|
reg.url '/bar'
reg.options.timeout = 0.5 # open/read timeout in seconds

reqg.options.open timeout = 0.2 # connection open timeout in seconds
End



Step 1: Set Timeouts

PHP

Sclient->request ('GET', '/delay/5', ['timeout' => 2]);



Picking the right timeout 67.6ms  2.13s
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Step 2: Retries

Try a second time

Maybe you'll get in the 99% of quicker responses!

Ruby
Faraday.new do |conn]
conn.request :retry, max: 1, interval: 0.05

end



Add up all timeouts and retries

Service AcallsB,C,D & E

4 services, with timeout = 2s, retries = 2 (3 total attempts)

4*2*3 =24 seconds!!

That’s a lot of time to be waiting for stuff
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Step 3: Circuit Breakers
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One Option: Code Breakers
require 'faraday'
require 'circuitbox/faraday middleware’

conn = Faraday.new(:url => "http://example.com") do |c|
c.use Cilrcuilitbox::FaradayMiddleware
end

response = conn.get ("/api")
1f response.success?

# success
else

# failure or open circuit

end



Another Option: Service Mesh! @1

API Gatway

Most API Gateways have features offered from
Service Mesh built in. However, they can still API Service API Service API Service
leverage existing service mesh too.
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Service Mesh is a network
communication infrastructure which
allows your to decouple and offload

most of the application network
functions from your service code.



Envoy - Service Mesh from Lyft

https://www.envoyproxy.io/

Demo/Guide on creating Circuit Breakers

http://blog.christianposta.com/microservices/01-microservices-patterns-with-e
nvoy-proxy-part-i-circuit-breaking/

Comparing Envoy and Istio Circuit Breaking

http://blog.christianposta.com/microservices/comparing-envoy-and-istio-circuit
-breaking-with-netflix-hystrix/
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