

Phil Sturgeon
Framework Interoperability Advocate

How to successfully release
an open-source PHP package

(and become a better developer for it)

1. Make

2. Market

3. Maintain

The goods

Things to consider before
you start

Why you should and why you shouldn’t.

Does it exist already?
Don’t clone, send pull requests instead.

Share your unique way of
solving a problem

Push the status quo.

Do you have the time?
Releasing open source code requires a time commitment.

You will meet people
Yay for nerd friends!

You will learn, a lot
Contributing an open source package will

push you as a developer.

GIT

GitHub

Issues

Pull Requests

Rebasing

Testing

TDD

Semantic Versioning

Code Coverage

Composer

Packagist

Coding Standards

PHP-FIG

PSR

DocBlocks

Travis

Scrutinizer CI

Changelogs

Licensing

Code Sniffer

Jekyll
Shields.io

Code Quality

Milestones

Releases

Dependency Injection

CouplingCohesion

1. Make

Design an API developers
will want to use
The cornerstone to a successful package.

// Create the transport
$transport = Swift_SmtpTransport::newInstance('smtp.example.org', 25);
$transport->setUsername('your username');
$transport->setPassword('your password');

// Create the email
$message = Swift_Message::newInstance();
$message->setSubject('Your subject');
$message->setFrom(array('john@doe.com' => 'John Doe'));
$message->setTo(array('foo@example.com'));
$message->setBody('Here is the message itself');
$message->attach(Swift_Attachment::fromPath('document.pdf'));

// Send the email
$mailer = Swift_Mailer::newInstance($transport);
$result = $mailer->send($message);

Send an email with Swift

Mail::send('emails.welcome', $data, function ($message) {

 $message->subject('Welcome!')
 ->from('john@doe.com', 'John Doe')
 ->to('foo@example.com')
 ->attach('document.pdf');
});

Send an email with Laravel

Name things right
It’s easy, like cache validation.

// Current library
$whoops = new Whoops\Run;
$whoops->pushHandler(new Whoops\Handler\PrettyPageHandler);
$whoops->register();

// Better class name
$whoops = new Whoops\ErrHandler;
$whoops->pushHandler(new Whoops\Handler\PrettyPageHandler);
$whoops->register();

// Better example variable
$errHandler = new Whoops\ErrHandler;
$errHandler->pushHandler(new Whoops\Handler\PrettyPageHandler);
$errHandler->register();

Whoops

Have a clear focus
Pull in other libraries when needed.

Utilize common
design patterns

Techniques like dependency injection make your
library easier use, maintain, read and test.

Break apart large
classes

Create more focused classes, and more
of them.

Framework agnostic
Don’t limit yourself to just one framework.

What versions of PHP should
I support?

Is PHP 5.3 worth the effort?

Source code on GitHub
Sorry Bitbucket, Google Code & SourceForge.

Write tests
Automated tests allow you to make stress-free changes.

Composer & Packagist
The primary delivery mechanism for your library.

composer.json
{
 "name": "league/fractal",
 "description": "Handle the output of complex data structures ready
for API output.",
 "homepage": "http://fractal.thephpleague.com/",
 "license": "MIT",
 "author": [{
 "name": “Phil Sturgeon”,
 "email": “me@philsturgeon.uk"
 }],
 "autoload": {
 "psr-4": {
 "League\\Fractal\\": "src"
 }
 }
}

.gitattributes
/tests export-ignore
/.gitattributes export-ignore
/.gitignore export-ignore
/.scrutinizer.yml export-ignore
/.travis.yml export-ignore
/phpunit.xml export-ignore

Semantic Versioning
Allows developers to upgrade versions safely.

MAJOR.MINOR.PATCH
BREAKING.NEW-FEATURES.BUG-FIXES

Coding Standards
Adhere to PSR-2 as the coding style guide.

DocBlocks
Allows for automated API documentation.

Continuous Integration
Automate tests, PSR compliance checks, code coverage analysis & more.

Have a license
An important step to protect your hard work.

Contributor instructions
Help them, help you!

2. Market

Choosing a name
Memorable, short and cool (without being too hipster).

The documentation
Your most important marketing tool.

“Read the code” is an acceptable answer
to“Where are the docs?”

Documentation myth #1

Documentation myth #2
“Auto-generated docs are good

enough”

“All you need a README file”

Documentation myth #3

“Documentation is easy.”

Documentation myth #4

Documentation “must-
haves”

How to do documentation right!

The elevator speech
What it is and why it matters, in 160 characters or less.

The simple example
Show me the code!!!

Installation instructions
Make it easy for someone to get started.

$ composer require league/fractal

Via Composer

Keep a changelog
Include upgrade instructions for
backwards breaking changes.

Links to source & author
This is open source after all, make yourself available!

Badges!
Badges help full in real-time information about your project.

Some helpful design tools
Just a few of my favourites.

Tell people!
Reddit
Twitter

Hacker News

SitePoint
phpweekly.com

phpdeveloper.org

3. Maintain

Watch it spread
See how your package is actually being used in

the real world.

Issues and Pull Requests
Open source collaboration is amazing.

Dealing with strong
personalities

Sometimes open source collaboration can suck.

Listen to those
actually using it

Lots of people will have opinions, but have they ever
used your package?

Dealing with backwards
compatibility

How to make improvements when they will
break existing code.

What to do when you lose
interest

Pass off to someone with a vested interest.

Thanks!
Follow me on Twitter at @philsturgeon

https://joind.in/14935

https://joind.in/14935

